Histamine selectively interrupts VE-cadherin adhesion independently of capacitive calcium entry.
نویسندگان
چکیده
Histamine is an important agent of innate immunity, transiently increasing the flux of immune-competent molecules from the vascular space to the tissues and then allowing rapid restoration of the integrity of the endothelial barrier. In previous work we found that histamine alters the endothelial barrier by disrupting cell-cell adhesion and identified VE-cadherin as an essential participant in this process. The previous work did not determine whether histamine directly interrupted VE-cadherin adhesion, whether the effects of histamine were selective for cadherin adhesion, or whether capacitive calcium flux across the cell membrane was necessary for the effects of histamine on cell-cell adhesion. In the current work we found that histamine directly interrupts adhesion of L cells expressing the type 1 histamine (H1) receptor and VE-cadherin to a VE-cadherin-Fc fusion protein. In contrast, integrin-mediated adhesion to fibronectin of the same L cells expressing the H1 receptor was not affected by histamine, demonstrating that the effects of histamine are selective for cadherin adhesion. Some of the effects of many edemagenic agonists on endothelium are dependent on the capacitive flux of calcium across the endothelial cell membrane. Blocking capacitive calcium flux with LaCl3 did not prevent histamine from interrupting VE-cadherin adhesion of transfected L cells, nor did it prevent histamine from interrupting cell-cell adhesion of human umbilical vein endothelial cells. These data support the contentions that histamine directly and selectively interrupts cadherin adhesion and this effect on cadherin adhesion is independent of capacitive calcium flux.
منابع مشابه
Histamine stimulates phosphorylation of adherens junction proteins and alters their link to vimentin.
Histamine increases microvascular permeability by creating small transitory (100-400 nm) gaps between adjacent endothelial cells at sites of vascular endothelial (VE)-cadherin-based adhesion. We examined the effects of histamine on the proteins within the VE-cadherin-based adherens junction in primary human umbilical vein endothelial cells. VE-cadherin is linked not only by beta- and alpha-cate...
متن کاملEndothelial barrier stabilization by a cyclic tandem peptide targeting VE-cadherin transinteraction in vitro and in vivo.
Inflammatory stimuli result in vascular leakage with potentially life threatening consequences. As a key barrier component, loss of vascular endothelial (VE-) cadherin-mediated adhesion often precedes endothelial breakdown. This study aimed to stabilize VE-cadherin transinteraction and endothelial barrier function using peptides targeting the VE-cadherin adhesive interface. After modelling the ...
متن کاملDistinct and redundant functions of Esama and VE-cadherin during vascular morphogenesis.
The cardiovascular system forms during early embryogenesis and adapts to embryonic growth by sprouting angiogenesis and vascular remodeling. These processes require fine-tuning of cell-cell adhesion to maintain and re-establish endothelial contacts, while allowing cell motility. We have compared the contribution of two endothelial cell-specific adhesion proteins, VE-cadherin (VE-cad/Cdh5) and E...
متن کاملVE-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability.
Beta-catenin plays an important role in the regulation of vascular endothelial cell-cell adhesions and barrier function by linking the VE-cadherin junction complex to the cytoskeleton. The purpose of this study was to evaluate the effect of beta-catenin and VE-cadherin interactions on endothelial permeability during inflammatory stimulation by histamine. We first assessed the ability of a beta-...
متن کاملThe VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis
VE-cadherin trafficking to and from the plasma membrane has emerged as a critical mechanism for regulating cadherin surface levels and adhesion strength. In addition, proteolytic processing of cadherin extracellular and cytoplasmic domains has been reported to regulate cadherin adhesion and signaling. Here we provide evidence that VE-cadherin is cleaved by calpain upon entry into clathrin-enric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 287 4 شماره
صفحات -
تاریخ انتشار 2004